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Abstract17

Previous attempts to classify task from eye movement data have relied on model18

architectures designed to emulate theoretically defined cognitive processes, and/or data that19

has been processed into aggregate (e.g., fixations, saccades) or statistical (e.g., fixation20

density) features. Black box convolutional neural networks (CNNs) are capable of identifying21

relevant features in raw and minimally processed data and images, but difficulty interpreting22

these model architectures has contributed to challenges in generalizing lab-trained CNNs to23

applied contexts. In the current study, a CNN classifier was used to classify task from two24

eye movement datasets (Exploratory and Confirmatory) in which participants searched,25

memorized, or rated indoor and outdoor scene images. The Exploratory dataset was used to26

tune the hyperparameters of the model, and the resulting model architecture was re-trained,27

validated, and tested on the Confirmatory dataset. The data were formatted into timelines28

(i.e., x-coordinate, y-coordinate, pupil size) and minimally processed images. To further29

understand the informational value of each component of the eye movement data, the30

timeline and image datasets were broken down into subsets with one or more components31

systematically removed. Classification of the timeline data consistently outperformed the32

image data. The Memorize condition was most often confused with Search and Rate. Pupil33

size was the least uniquely informative component when compared with the x- and34

y-coordinates. The general pattern of results for the Exploratory dataset was replicated in35

the Confirmatory dataset. Overall, the present study provides a practical and reliable black36

box solution to classifying task from eye movement data.37

Keywords: deep learning, eye tracking, convolutional neural network, cognitive state,38

endogenous attention39
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Introduction40

The association between eye movements and mental activity is a fundamental topic of41

interest in attention research that has provided a foundation for developing a wide range of42

human assistive technologies. Early work by Yarbus (1967) showed that eye movement43

patterns appear to differ qualitatively depending on the task-at-hand (for a review of this44

work, see Tatler, Wade, Kwan, Findlay, & Velichkovsky, 2010). A replication of this work by45

DeAngelus and Pelz (2009) showed that the differences in eye movements between tasks can46

be quantified, and appear to be somewhat generalizable. Technological advances and47

improvements in computing power have allowed researchers to make inferences regarding the48

task using eye movement data, also known as the “inverse Yarbus process” (Haji-Abolhassani49

& Clark, 2014).50

Current state-of-the-art machine learning and neural network algorithms are capable of51

identifying diagnostic patterns for the purpose of decoding a variety of data types, but the52

inner workings of the resulting model solutions are difficult or impossible to interpret.53

Algorithms that provide such solutions are referred to as black box models. Dissections of54

black box models have been largely uninformative (Zhou, Bau, Oliva, & Torralba, 2019),55

limiting the potential for researchers to apply the mechanisms underlying successful56

classification of the data. Still, black box models provide a powerful solution for57

technological applications such as human-computer interfaces (HCI; for a review, see58

Lukander, Toivanen, & Puolamäki, 2017). While the internal operations of the model59

solutions used for HCI applications do not necessarily need to be interpretable to serve their60

purpose, Lukander, Toivanen, and Puolamäki (2017) pointed out that the inability to61

interpret the mechanisms underlying the function of black box solutions impedes the62

generalizability of these methods, and increases the difficulty of expanding these findings to63

real life applications. To ground these solutions, researchers guide decoding efforts by using64

eye movement data and/or models with built-in theoretical assumptions. For instance, eye65
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movement data is processed into meaningful aggregate properties such as fixations or66

saccades, or statistical features such as fixation density, and the models used to decode these67

data are structured based on the current understanding of relevant cognitive or68

neurobiological processes (e.g., MacInnes, Hunt, Clarke, & Dodd, 2018). Despite the69

proposed disadvantages of black box approaches to classifying eye movement data, there is70

no clear evidence to support the notion that the grounded solutions described above are71

actually more valid or definitive than a black box solution.72

The scope of theoretically informed solutions to decoding eye movement data is limited73

to the extent of the current theoretical knowledge linking eye movements to cognitive and74

neurobiological processes. As our theoretical understanding of these processes develops, older75

theoretically informed models become outdated. Furthermore, these solutions are susceptible76

to any inaccurate preconceptions that are built into the theory. Consider the case of Greene,77

Liu, and Wolfe (2012), who were not able to classify task from commonly used aggregate eye78

movement features (i.e., number of fixations, mean fixation duration, mean saccade79

amplitude, percent of image covered by fixations) using correlations, a linear discriminant80

model, and a support vector machine (see Table 1). This led Greene and colleagues to81

question the robustness of Yarbus’s (1967) findings, inspiring a slew of responses that82

successfully decoded the same dataset by aggregating the eye movements into different83

feature sets or implementing different model architectures [see Table 1; Haji-Abolhassani and84

Clark (2014); Kanan, Ray, Bseiso, Hsiao, and Cottrell (2014); Borji and Itti (2014)]. The85

subsequent re-analyses of these data support Yarbus (1967) and the notion that task can be86

decoded from eye movement data using a variety of combinations of data features and model87

architectures. Collectively, these re-analyses did not point to an obvious global solution88

capable of clarifying future approaches to the inverse Yarbus problem beyond what could be89

inferred from black box model solutions, but did provide a wide-ranging survey of a variety90

of methodological features that can be applied to theoretical or black box approaches.91
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Eye movements can only delineate tasks to the extent that the cognitive processes92

underlying the tasks can be differentiated (Król & Król, 2018). Every task is associated with93

a unique set of cognitive processes (Coco & Keller, 2014; Król & Król, 2018), but in some94

cases, the cognitive processes for different tasks may produce indistinguishable eye movement95

patterns. Others may define these terms differently, but for present purposes, our working96

definitions are that cognitive “processes” are theoretical constructs that could be difficult to97

isolate in practice, whereas a “task” is a more concrete/explicit set of goals and behaviors98

imposed by the experimenter in an effort to operationalize one or more cognitive processes.99

A “mental state,” in contrast, is also a more theoretical term that is a bit more general and100

could include goals and cognitive processes, but could also presumably encompass other101

elements like mood or distraction.102

To differentiate the cognitive processes underlying task-evoked eye movements, some103

studies have chosen to classify tasks that rely on stimuli that prompt easily distinguishable104

eye movements, such as reading text (e.g., Henderson, Shinkareva, Wang, Luke, &105

Olejarczyk, 2013). The eye movements elicited by salient stimulus features facilitate task106

classifications; however, because these eye movements are the consequence of a feature (or107

features) inherent to the stimulus rather than the task, it is unclear if these classifications108

are attributable to the stimulus or a complex mental state (Boisvert & Bruce, 2016; e.g.,109

Henderson, Shinkareva, Wang, Luke, & Olejarczyk, 2013). Additionally, the distinct nature110

of exogenously elicited eye movements prompts decoding algorithms to prioritize these111

bottom-up patterns in the data over higher-level top-down effects (Borji & Itti, 2014). This112

means that these models are identifying the type of information that is being processed, but113

are not necessarily reflecting the mental state of the individual observing the stimulus. Eye114

movements that are the product of bottom-up processes have been reliably decoded, which is115

relevant for some HCI applications; however, in our view such efforts do not fit the spirit of116

the inverse Yarbus problem, as most groups seem to construe it. Namely, most attempts at117

addressing the inverse Yarbus problem are concerned with decoding higher-level abstract118
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mental operations that can be applied to virtually any naturalistic image and are not119

necessarily dependent on specific structural elements of the stimuli (e.g., the highly regular,120

linear patterns of written text).121

Currently, there is not a clearly established upper limit to how well cognitive task can122

be classified from eye movement data. Prior evidence has shown that the task-at-hand is123

capable of producing distinguishable eye movement features such as the total scan path124

length, total number of fixations, and the amount of time to the first saccade (Castelhano,125

Mack, & Henderson, 2009; DeAngelus & Pelz, 2009). Decoding accuracies within the context126

of determining task from eye movements typically range from chance performance to127

relatively robust classification (see Table 1). In one case, Coco and Keller (2014) categorized128

the same eye movement features used by Greene, Liu, and Wolfe (2012) with respect to the129

relative contribution of latent visual or linguistic components of three tasks (visual search,130

name the picture, name objects in the picture) with 84% accuracy (chance = 33%). While131

this manipulation is reminiscent of other experiments relying on the bottom-up influence of132

words and pictures (Boisvert & Bruce, 2016; e.g., Henderson, Shinkareva, Wang, Luke, &133

Olejarczyk, 2013) the eye movements in the Coco and Keller (2014) tasks can be attributed134

to the occurrence of top-down attentional processes. A conceptually related follow-up to this135

study classified tasks along two spatial and semantic dimensions, resulting in 51%136

classification accuracy (chance = 25%) (Król & Król, 2018). A closer look at these results137

showed that the categories within the semantic dimension were consistently misclassified,138

suggesting that this level of distinction may require a richer dataset, or a more powerful139

decoding algorithm. Altogether, there is no measurable index of relative top-down or140

bottom-up influence, but this body of literature suggests that the relative influence of141

top-down and bottom-up attentional processes may have a role in determining the142

decodability of the eye movement data.143

As shown in Table 1, when eye movement data are prepared for classification, fixation144
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Table 1
Previous Attempts to Classify Cognitive Task Using Eye Movement Data

Study Tasks Features Model Architecture Accuracy
(Chance)

Greene et
al. (2012)

memorize,
decade, people,
wealth

number of fixations, mean fixa-
tion duration, mean saccade am-
plitude, percent of image covered
by fixations, dwell times

linear
discriminant,
correlation, SVM

25.9%
(25%)

Haji-
Abolhassani
& James
(2014)

Greene et al.
tasks

fixation clusters Hidden Markov
Models

59.64%
(25%)

Kanan et al.
(2014)

Greene et al.
tasks

mean fixation durations, number
of fixations

multi-fixation
pattern analysis

37.9%
(25%)

Borji & Itti
(2014)

Greene et al.
tasks

number of fixations, mean fixa-
tion duration, mean saccade am-
plitude, percent of image covered
by fixations, first five fixations,
fixation density

kNN, RUSBoost 34.34%
(25%)

Borji & Itti
(2014)

Yarbus tasks
(i.e., view,
wealth, age,
prior activity,
clothes,
location, time
away)

number of fixations, mean fixa-
tion duration, mean saccade am-
plitude, percent of image covered
by fixations, first five fixations,
fixation density

kNN, RUSBoost 24.21%
(14.29%)

Coco &
Keller
(2014)

search, name
picture, name
object

Greene et al. features, latency
of first fixation, first fixation du-
ration, mean fixation duration,
total gaze duration, initiation
time, mean saliency at fixation,
entropy of attentional landscape

MM, LASSO,
SVM

84% (33%)

MacInnes et
al. (2018)

view, memorize,
search, rate

saccade latency, saccade dura-
tion, saccade amplitude, peak
saccade velocity, absolute sac-
cade angle, pupil size

augmented Naive
Bayes Network

53.9%
(25%)

Król &
Król (2018)

people, in-
doors/outdoors,
white/black,
search

eccentricity, screen coverage feed forward
neural network

51.4%
(25%)

and saccade statistics are typically aggregated along spatial or temporal dimensions,145

resulting in variables such as fixation density or saccade amplitude (Castelhano, Mack, &146
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Henderson, 2009; MacInnes, Hunt, Clarke, & Dodd, 2018; Mills, Hollingworth, Van der147

Stigchel, Hoffman, & Dodd, 2011). The implementation of these statistical methods is meant148

to explicitly provide the decoding algorithm with characteristics of the eye movement data149

that are representative of theoretically relevant cognitive processes. For example, MacInnes,150

Hunt, Clarke, and Dodd (2018) attempted to provide an algorithm with data designed to be151

representative of inputs to the frontal eye fields. In some instances, such as the case of Król152

and Król (2018), grounding the data using theoretically driven aggregation methods may153

require sacrificing granularity in the dataset. This means that aggregating the data has the154

potential to wash out certain fine-grained distinctions that could otherwise be detected.155

Data structures of any kind can only be decoded to the extent to which the data are capable156

of representing differences between categories. Given that the cognitive processes underlying157

distinct tasks are often overlapping (Coco & Keller, 2014), decreasing the granularity of the158

data may actually limit the potential of the algorithm to make fine-grained distinctions159

between diagnostic components underlying the tasks to be decoded.160

The current state of the literature does not provide any firm guidelines for determining161

what eye movement features are most meaningful, or what model architectures are best162

suited for determining task from eye movements. The examples provided in Table 1 used a163

variety of eye movement features and model architectures, most of which were effective to164

some extent. A proper comparison of these outcomes is difficult because these datasets vary165

in levels of chance and data quality. Datasets with more tasks to be classified have lower166

levels of chance, lowering the threshold for successful classification. Additionally, datasets167

with a lower signal-to-noise ratio will have a lower achievable classification accuracy. For168

these reasons, outside of re-analyzing the same datasets, there is no consensus on how to169

establish direct comparisons of these model architectures. Given the inability to directly170

compare the relative effectiveness of the various theoretical approaches present in the171

literature, the current study addressed the inverse Yarbus problem by allowing a black box172

model to self-determine the most informative features from minimally processed eye173
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movement data.174

The current study explored pragmatic solutions to the problem of classifying task from175

eye movement data by submitting minimally processed x-coordinate, y-coordinate, and pupil176

size data to a convolutional neural network (CNN) model. Instead of transforming the data177

into theoretically defined units, we allowed the network to learn meaningful patterns in the178

data on its own. CNNs have a natural propensity to develop low-level feature detectors179

similar to the primary visual cortex (e.g., Seeliger et al., 2018); for this reason, they are180

commonly implemented for image classification. In some cases, researchers have found181

success classifying data that natively exist in a timeline format by first transforming the data182

to an image-based format and then passing it to a deep neural network classifier (e.g.,183

Bashivan, Rish, Yeasin, & Codella, 2016); however, it is not always obvious a priori which184

representation of a particular type of data is best-suited for neural network classifiers to be185

able to detect informative features, and the ideal representational format must be186

determined empirically. Thus, to test the possibility that image data might be better suited187

to the CNN classifier in our eye movement data as well, we also transformed our dataset188

from raw timelines into simple image representations and compared CNN-based classification189

of timeline data to that of image data. The image representations we generated also matched190

the eye movement trace images classically associated with the work of Yarbus (1967) and191

others, which were the original forays into this line of inquiry.192

To our knowledge, no study has attempted to address the inverse Yarbus problem193

using any combination of the following methods: (1) Non-aggregated data, (2) image data194

format, and (3) a black-box CNN architecture. Given that CNN architectures are capable of195

learning features represented in raw data formats, and are well-suited to decoding196

multidimensional data that have a distinct spatial or temporal structure, we expected that a197

non-theoretically-constrained CNN architecture could be capable of decoding data at levels198

consistent with the current state of the art. Furthermore, despite evidence that black box199
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approaches to the inverse Yarbus problem can impede generalizability (Lukander, Toivanen,200

& Puolamäki, 2017), we expected that when testing the approach on an entirely separate201

dataset, providing the model with minimally processed data and the flexibility to identify202

the unique features within each dataset would result in the replication of our initial findings.203

Method204

Participants205

Two separate datasets were used to develop and test the deep CNN architecture. The206

two datasets were collected from two separate experiments, which we refer to as Exploratory207

and Confirmatory. The participants for both datasets consisted of college students208

(Exploratory N = 124; Confirmatory N = 77) from the University of Nebraska-Lincoln who209

participated in exchange for class credit. Participants who took part in the Exploratory210

experiment did not participate in the Confirmatory experiment. All materials and211

procedures were approved by the University of Nebraska-Lincoln Institutional Review Board212

prior to data collection.213

Materials and Procedures214

Each participant viewed a series of indoor and outdoor scene images while carrying out215

a search, memorization, or rating task. For the memorization task, participants were216

instructed to memorize the image in anticipation of a forced choice recognition test. At the217

end of each Memorize trial, the participants were prompted to indicate which of two images218

was just presented. The two images were identical outside of a small change in the display219

(e.g. object removed or added to the scene). For the rating task, participants were asked to220

think about how they would rate the image on a scale from 1 (very unpleasant) to 7 (very221

pleasant). The participants were prompted to provide a rating immediately after viewing the222

image. For the search task, participants were instructed to find a small ‘Z’ or ‘N’ embedded223

in the image. In reality, targets were not present in the images outside of a small subset of224
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images (n = 5) that were not analyzed but were included in the experiment design so225

participants belived a target was always present. Trials containing the target were excluded226

because search behavior was likely to stop if the target was found, adding considerable noise227

to the eye movement data. For consistency between trial types, participants were prompted228

to indicate if they found a ‘Z’ or ‘N’ at the end of each Search trial.229

The same materials were used in both experiments with a minor variation in the230

procedures. In the Confirmatory experiment, participants were directed as to where search231

targets might appear in the image (e.g., on flat surfaces). No such instructions were provided232

in the Exploratory experiment.233

In both experiments, participants completed one mixed block of 120 trials (task cued234

prior to each trial), or three uniform blocks of 40 trials (task cued prior to each block for a235

total of 120 trials). Block type was assigned in counterbalanced order. When the blocks were236

mixed, the trial types were randomly intermixed within the block. For uniform blocks, each237

block consisted entirely of one of the three conditions (Search, Memorize, Rate), with block238

types presented in random order. Each stimulus image was presented for 8 seconds. The239

pictures were presented in color, with a size of 1024 x 768 pixels, subtending a visual angle of240

23.8◦ x 18.0◦.241

Eye movements were recorded using an SR Research EyeLink 1000 eye tracker with a242

sampling rate of 1000Hz. Only the right eye was recorded. The system was calibrated using243

a nine-point accuracy and validity test. Errors greater than 1◦ or averaging greater than 0.5◦
244

in total were re-calibrated.245

Datasets246

On some trials, a probe was presented on the screen six seconds after the onset of the247

trial, which required participants to fixate the probe once detected. To avoid confounds248

resulting from the probe, only the first six seconds of the data for each trial was analyzed.249
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Trials that contained fewer than 6000 samples within the first six seconds of the trial were250

excluded before analysis. For both datasets, the trials were pooled across participants. After251

excluding trials, the Exploratory dataset consisted of 12,177 of the 16,740 total trials, and252

the Confirmatory dataset consisted of 9,301 of the 10,395 total trials.253

The raw x-coordinate, y-coordinate, and pupil size data collected at every sampling254

time point in the trial were used as inputs to the deep learning classifier. These data were255

also used to develop plot image datasets that were classified separately from the raw timeline256

datasets. For the plot image datasets, the timeline data for each trial were converted into257

scatterplot diagrams. The x- and y- coordinates and pupil size were used to plot each data258

point onto a scatterplot (e.g., see Figure 1). The coordinates were used to plot the location259

of the dot, pupil size was used to determine the relative size of the dot, and shading of the260

dot was used to indicate the time-course of the eye movements throughout the trial. The261

background of the plot images and first data point were white. Each subsequent data point262

was one shade darker than the previous data point until the final data point was reached.263

The final data point was black. For standardization, pupil size was divided by 10, and one264

unit was added. The plots were sized to match the dimensions of the data collection monitor265

(1024 x 768 pixels) and then shrunk to (240 x 180 pixels) in an effort to reduce the266

dimensionality of the data.267

Search Memorize Rate

Figure 1 . Each trial was represented as an image. Each sample collected within the trial was plotted as a dot in the image.
Pupil size was represented by the size of the dot. The time course of the eye movements was represented by the gradual
darkening of the dot over time.



DEEP LEARNING AND EYE TRACKING 13

Data Subsets. The full timeline dataset was structured into three columns268

representing the x- and y- coordinates, and pupil size for each data point collected in the269

first six seconds of each trial. To systematically assess the predictive value of each XYP (i.e.,270

x-coordinates, y-coordinates, pupil size) component of the data, the timeline and image271

datasets were batched into subsets that excluded one of the components (i.e., XY∅, X∅P,272

∅YP), or contained only one of the components (i.e., X∅∅, ∅Y∅, ∅∅P). For the timeline273

datasets, this means that the columns to be excluded in each data subset were replaced with274

zeros. The data were replaced with zeros because removing the columns would change the275

structure of the data. The same systematic batching process was carried out for the image276

dataset. See Figure 2 for an example of each of these image data subsets.277

øYP XøP XYø

Xøø øYø øøP

Figure 2 . Plot images were used to represent data subsets that excluded one component of the eye movement data (i.e., XY∅,
X∅P, ∅YP) or contained only one component (i.e., X∅∅, ∅Y∅, ∅∅P). As with the trials in the full XYP dataset, the time
course of the eye movements was represented by the shading of the dot. The first sample of each trial was white, and the last
sample was black.
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Classification278

Deep CNN model architectures were implemented to classify the trials into Search,279

Memorize, or Rate categories. Because CNNs act as a digital filter sensitive to the number of280

features in the data, the differences in the structure of the timeline and image data formats281

necessitated separate CNN model architectures. The model architectures were developed282

with the intent of establishing a generalizable approach to classifying task from eye283

movement data.284

The development of these models was not guided by any formal theoretical285

assumptions regarding the patterns or features likely to be extracted by the classifier. Like286

many HCI models, the development of these models followed general intuitions concerned287

with building a model architecture capable of transforming the data inputs into an288

interpretable feature set that would not overfit the dataset. The models were developed289

using version 0.3b of the DeLINEATE toolbox, which operates over a Keras backend290

(http://delineate.it) (Kuntzelman et al., 2021). Each training/test iteration randomly split291

the data so that 70% of the trials were allocated to training, 15% to validation, and 15% to292

testing. (This approach achieves essentially the same benefit of a more traditional k-fold293

cross-validation approach insofar as it allows all data to be used as both training and test294

without double-dipping; however, by resampling the data instead of using strict fold295

divisions, we can sidestep the issue of how to incorporate a validation set into the k-fold296

approach.) Training of the model was stopped when validation accuracy did not improve297

over the span of 100 epochs. Once the early stopping threshold was reached, the resulting298

model was tested on the held-out test data. This process was repeated 10 times for each299

model, resulting in 10 classification accuracy scores for each model. The resulting accuracy300

scores were used for the comparisons against chance and other datasets or data subsets.301

The models were developed and tested on the Exploratory dataset. Model302

hyperparameters were adjusted until the classification accuracies on the test data appeared303

http://delineate.it
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to peak, with no obvious evidence of excessive overfitting during the training process. The304

model architecture with the highest classification accuracy on the Exploratory dataset was305

trained, validated, and tested independently on the Confirmatory dataset. This means that306

the model that was used to analyze the Confirmatory dataset was not trained on the307

Exploratory dataset. For all of the analyses that excluded one or more components of the308

eye movement data (e.g., XY∅, X∅P, ∅YP, and so on), new models were trained for each309

data subset (i.e., data subset analyses did not use the model that had already been trained310

on the full XYP dataset). The model architectures used for the timeline and plot image311

datasets are shown in Figure 3, with some additional details on the architecture312

hyperparameters in the figure caption.313

Analysis314

Results for the CNN architecture that resulted in the highest accuracy on the315

Exploratory dataset are reported below. For every dataset tested, a one-sample two-tailed316

t-test was used to compare the CNN accuracies against chance (33%). The Shapiro-Wilk test317

was used to assess the normality for each dataset. When normality was assumed, the mean318

accuracy for that dataset was compared against chance using Student’s one-sample319

two-tailed t-test. When normality could not be assumed, the median accuracy for that320

dataset was compared against chance using Wilcoxon’s Signed Rank test.321

To determine the independent contributions of the three components of the eye322

movement data, the data subsets were compared within the timeline and plot image data323

types. If classification accuracies were lower when the data were batched into subsets, the324

component that was removed was assumed to have some unique contribution that the model325

was using to inform classification decisions. To determine the uniqueness of the contribution326

from each component, the accuracies from each subset with one component of the data327

removed were compared to the accuracies for the full dataset (XYP) using a one-way328

between-subjects Analysis of Variance (ANOVA). To further evaluate the decodability of329
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Figure 3 . Two different model architectures were used to classify the timeline and image data. Both models were compiled
using a categorical crossentropy loss function, and optimized with the Adam algorithm. Optimizer parameters were initial
learning rate = 0.005, β1 = 0.9, β2 = 0.999, ε = 0.1. The timeline model had 16,946 trainable parameters (29,998 total); the
image model had 18,525 trainable parameters (18,827 total).
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each component independently, the accuracies from each subset containing only one330

component of the eye movement data were compared within a separate one-way331

between-subjects ANOVA. All post-hoc comparisons were corrected using Tukey’s HSD.332

Results333

Timeline Data Classification334

Exploratory. Classification accuracies for the XYP timeline dataset were well above335

chance (chance = .33; M = .526, SD = .018; t9 = 34.565, p < .001). Accuracies for336

classifications of the batched data subsets were all better than chance (see Figure 4). As337

shown in the confusion matrices displayed in Figure 5, the data subsets with lower overall338

classification accuracies almost always classified the Memorize condition at or below chance339

levels of accuracy. Misclassifications of the Memorize condition were split relatively evenly340

between the Search and Rate conditions.341

There was a difference in classification accuracy for the XYP dataset and the subsets342

that had the pupil size, x-coordinate, and y-coordinate data systematically removed (F 3,36 =343

47.471, p < .001, η2 = 0.798). Post-hoc comparisons against the XYP dataset showed that344

classification accuracies were not affected by the removal of pupil size or y-coordinate data345

(see Table 2). The null effect present when pupil size was removed suggests that the pupil346

size data were not contributing unique information that was not otherwise provided by the x-347

and y-coordinates. A strict significance threshold of α = .05 implies the same conclusion for348

the y-coordinate data, but the relatively low degrees of freedom (df = 18) and the borderline349

observed p-value (p = .056) afford the possibility that there exists a small effect. However,350

classification for the ∅YP subset was significantly lower than the XYP dataset, showing that351

the x-coordinate data were uniquely informative to the classification.352

There was also a difference in classification accuracies for the X∅∅, ∅Y∅, and ∅∅P353

subsets (F 2,27 = 75.145, p < .001, η2 = 0.848). Post-hoc comparisons showed that354
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Figure 4 . All of the data subsets were decoded at levels better than chance (.33). Each subset is labeled with the mean
accuracy. The error bars represent standard errors.

Table 2
Timeline Subset Comparisons

Exploratory Confirmatory
Comparison t p t p
XYP vs. ∅YP 9.420 < .001 5.210 < .001
XYP vs. X∅P 2.645 .056 3.165 .016
XYP vs. XY∅ 1.635 .372 1.805 .288
X∅∅ vs. ∅Y∅ 5.187 < .001 0.495 .874
X∅∅ vs. ∅∅P 12.213 < .001 10.178 < .001
∅Y∅ vs. ∅∅P 7.026 < .001 9.683 < .001

classification accuracy for the ∅∅P subset was lower than the X∅∅ and ∅Y∅ subsets.355

Classification accuracy for the X∅∅ subset was higher than the ∅Y∅ subset. Altogether,356

these findings suggest that pupil size data was the least uniquely informative to classification357

decisions, while the x-coordinate data was the most uniquely informative.358
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Figure 5 . The confusion matrices represent the average classification accuracies for each condition of the timeline data (S =
Search, M = Memorize, R = Rate). The vertical axis of the confusion matrices represents the actual condition for the trial.
The horizontal axis of the confusion matrices represents the condition that was predicted by the model.

Confirmatory. Classification accuracies for the Confirmatory XYP timeline dataset359

were well above chance (M = .537, SD = 0.036, t9 = 17.849, p < .001). Classification360

accuracies for the data subsets were also better than chance (see Figure 4). Overall, there361

was high similarity in the pattern of results for the Exploratory and Confirmatory datasets362

(see Figure 4). Furthermore, the general trend showing that pupil size was the least363

informative eye tracking data component was replicated in the Confirmatory dataset (see364

Table 2). Also in concordance with the Exploratory timeline dataset, the confusion matrices365

for these data revealed that the Memorize task was mis-classified more often than the Search366

and Rate tasks (see Figure 5).367

To test the stability of the model architecture, classification accuracies for the XYP368

Exploratory and Confirmatory timeline datasets were compared. The Shapiro-Wilk test for369

normality indicated that the Exploratory (W = 0.937, p = .524) and Confirmatory (W =370
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0.884, p = .145) datasets were normally distributed, but Levene’s test indicated that the371

variances were not equal, F 1,18 = 8.783, p = .008. Welch’s unequal variances t-test did not372

show a difference between the two datasets, t13.045 = 0.907, p = .381, Cohen’s d = 0.406.373

These findings indicate that the deep learning model decoded the Exploratory and374

Confirmatory timeline datasets equally well, but the Confirmatory dataset classifications375

were less consistent across training/test iterations (as indicated by the increase in standard376

deviation).377

Plot Image Classification378

Exploratory. Classification accuracies for the XYP plot image data were better379

than chance (M = .436, SD = .020, p < .001), but were less accurate than the classifications380

for the XYP Exploratory timeline data (t18 = 10.813, p < .001). Accuracies for the381

classifications for all subsets of the plot image data except the ∅∅P subset were better than382

chance (see Figure 6). Following the pattern expressed by the timeline dataset, the confusion383

matrices showed that the Memorize condition was misclassified more often than the other384

conditions, and appeared to be equally mis-identified as a Search or Rate condition (see385

Figure 7).386

There was a difference in classification accuracy between the XYP dataset and the data387

subsets (F 4,45 = 7.093, p < .001, η2 = .387). Post-hoc comparisons showed that compared to388

the XYP dataset, there was no effect of removing pupil size or the x-coordinates, but389

classification accuracy was worse when the y-coordinates were removed (see Table 3).390

There was also a difference in classification accuracies between the X∅∅, ∅Y∅, and391

∅∅P subsets (Levene’s test: F 2,27 = 3.815, p = .035; Welch correction for lack of392

homogeneity of variances: F 2,17.993 = 228.137, p < .001, η2 = .899). Post-hoc comparisons393

showed that there was no difference in classification accuracies for the X∅∅ and ∅Y∅394

subsets, but classification for the ∅∅P subset were less accurate than the X∅∅ and ∅Y∅395
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Figure 6 . All of the data subsets except for the Exploratory ∅∅P dataset were decoded at levels better than chance (.33).
Each subset is labeled with the mean accuracy. The error bars represent standard errors.

Table 3
Image Subset Comparisons

Exploratory Confirmatory
Comparison t p t p
XYP vs. ∅YP 1.792 .391 1.623 .491
XYP vs. X∅P 2.939 .039 4.375 < .001
XYP vs. XY∅ 0.474 .989 1.557 .532
X∅∅ vs. ∅Y∅ 0.423 .906 2.807 .204
X∅∅ vs. ∅∅P 13.569 < .001 5.070 < .001
∅Y∅ vs. ∅∅P 13.235 < .001 7.877 < .001

subsets.396

Confirmatory. Classification accuracies for the XYP confirmatory image dataset397

were well above chance (M = .449, SD = 0.012, t9 = 31.061, p < .001), but were less398

accurate than the classifications of the confirmatory timeline dataset (t18 = 11.167, p <399
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Figure 7 . The confusion matrices represent the average classification accuracies for each condition of the image data (S =
Search, M = Memorize, R = Rate). The vertical axis of the confusion matrices represents the actual condition for the trial.
The horizontal axis of the confusion matrices represents the condition that was predicted by the model.

.001). Accuracies for classifications of the data subsets were also all better than chance (see400

Figure 6). The confusion matrices followed the pattern showing that the Memorize condition401

was mistaken most often, and was relatively equally mis-identified as a Search or Rate trial402

(see Figure 7). As with the timeline data, the general trend showing that pupil size data was403

the least informative to the model was replicated in the Confirmatory dataset (see Table 3).404

To test the stability of the model architecture, the classification accuracies for the XYP405

Exploratory and Confirmatory plot image datasets were compared. The independent406

samples t-test comparing the classification accuracies for the Exploratory and Confirmatory407

plot image datasets did not show a significant difference, t18 = 1.777, p = .092, Cohen’s d =408

0.795.409
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Discussion410

The present study aimed to produce a practical and reliable example of a black box411

solution to the inverse Yarbus problem. To implement this solution, we classified raw412

timeline and minimally processed plot image data using a CNN model architecture. To our413

knowledge, this study was the first to provide a solution to determining task from eye414

movement data using each of the following: (1) Non-aggregated eye tracking data (i.e., raw415

x-coordinates, y-coordinates, pupil size), (2) timeline and image data formats (see Figure 2),416

and (3) a black box CNN architecture. This study probed the independent contributions of417

the x-coordinate, y-coordinate, and pupil size components of the eye movement data using a418

CNN. The CNN was able to decode the timeline and plot image data better than chance,419

although only the timeline datasets were decoded with accuracies comparable to other420

state-of-the-art approaches. Datasets with lower classification accuracies were not able to421

differentiate the cognitive processes underlying the Memorize task from the cognitive422

processes underlying the Search and Rate tasks. Decoding subsets of the data revealed that423

pupil size was the least uniquely informative component of the eye movement data. This424

pattern of findings was consistent between the Exploratory and Confirmatory datasets.425

Although several aggregate eye movement features have been tested as task predictors,426

to our knowledge, no other study has assessed the predictive value of the data format (viz.,427

data in the format of a plot image). Our results suggest that although CNNs are robust428

image classifiers, eye movement data is decoded in the standard timeline format more429

effectively than in image format. This may be because the image data format contains less430

decodable information than the timeline format. Over the span of the trial (six seconds), the431

eye movements occasionally overlapped. When there was an overlap in the image data432

format, the more recent data points overwrote the older data points. This resulted in some433

information loss that did not occur when the data were represented in the raw timeline434

format. Despite this loss of information, the plot image format was still decoded with better435
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than chance accuracy. To further examine the viability of classifying task from eye436

movement image datasets, future research might consider representing the data in different437

forms such as 3-dimensional data formats, or more complex color combinations capable of438

representing overlapping data points.439

When considering the superior performance of the timeline data (vs., plot image data),440

we must also consider the differences in the model architectures. Because the structures of441

the timeline and plot image data formats were different, the models decoding those data442

structures also needed to be different. Both model architectures were optimized individually443

on the Exploratory dataset before being tested on the Confirmatory dataset. For both444

timeline and plot image formats, there was good replicability between the Exploratory and445

Confirmatory datasets, demonstrating that these architectures performed similarly from446

experiment to experiment. An appropriately tuned CNN should be capable of learning any447

arbitrary function, but given that the upper bound for decodability of these datasets is448

unknown, there is the possibility that a model architecture exists that is capable of classifying449

the plot image data format more accurately than the model used to classify the timeline450

data. Despite this possibility, the convergence of these findings with other studies (see Table451

1) suggests that the results of this study are approaching a ceiling for the potential to solve452

the inverse Yarbus problem with eye movement data. We attempted to replicate some of453

those other studies’ methods on our own dataset, but were only able to do so with the454

methods of Coco and Keller (2014), due to lack of publicly available code or incompatibility455

with our data; for Coco and Keller’s methods, we did not achieve better-than-chance456

classification in our data. We believe that the below chance outcome for this replication457

analysis is likely attributable to Coco and Keller’s focus on differentiating the eye movements458

for separate task sets based on the assumed underlying mental operations rather than relying459

on distinct features in the data or a complex model architecture. Although the true capacity460

to predict task from eye movement data is unknown, standardizing datasets in the future461

could provide a point for comparison that can more effectively indicate which methods are462
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most effective at solving the inverse Yarbus problem. As a gesture towards this goal, we have463

made the data and code from the present study publicly available at: https://osf.io/dyq3t.464

In the current study, the Memorize condition was classified less accurately than the465

Search and Rate conditions, especially for the datasets with lower overall accuracy. This466

suggests that the eye movements associated with the Memorize task were potentially lacking467

unique or informative features to decode. This means that eye movements associated with468

the Memorize condition were interpreted as noise, or were sharing features of underlying469

cognitive processes that were represented in the eye movements associated with the Search470

and Rate tasks. Previous research (e.g., Król & Król, 2018) has attributed the inability to471

differentiate one condition from the others to the overlapping of sub-features in the eye472

movements between two tasks that are too subtle to be represented in the eye movement473

data.474

To more clearly understand how the different tasks influenced the decodability of the475

eye movement data, additional analyses were conducted on the Exploratory and476

Confirmatory timeline datasets (see Appendix). For the main supplementary analysis, the477

data subsets were re-submitted to the CNN and re-classified as 2-category task sets. In478

addition to the main supplementary analysis, the results from the primary analysis were479

re-calculated from 3-category task sets to 2-category task sets. In the primary analyses, the480

Memorize condition was predicted with the lowest accuracy, but mis-classifications of the481

Search and Rate trials were most often categorized as Memorize. As a whole, this pattern of482

results and the main supplementary analysis indicated a general bias for uncertain trials to483

be categorized as Memorize. As expected, the main supplementary analysis also showed that484

the 2-category task set that included only Search and Rate had higher accuracies than both485

of the 2-category task sets that included the Memorize condition. The re-calculation analysis486

generally replicated the pattern of results seen in the main supplementary analysis but with487

larger variance, suggesting that including lower-accuracy trial types during model training488

https://osf.io/dyq3t
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can decrease the consistency of classifier performance. Overall, the findings from this489

supplemental analysis show that conclusions drawn from comparisons between approaches490

that do not use the same task sets, or the same number of tasks, could be potentially491

uninterpretable because the features underlying the task categories are interpreted differently492

by the neural network algorithm.493

When determining the unique contributions of the the eye movement features used in494

this study (x-coordinates, y-coordinates, pupil size), the pupil size data was consistently the495

least uniquely informative. When pupil size was removed from the Exploratory and496

Confirmatory timeline and plot image datasets, classification accuracy remained stable (vs.,497

XYP dataset). Furthermore, classification accuracy of the ∅∅P subset was the lowest of all498

of the data subsets, and in one instance, was no better than chance. Although these findings499

indicate that, in this case, pupil size was a relatively uninformative component of the eye500

movement data, previous research has associated changes in pupil size as indicators of501

working memory load (Kahneman & Beatty, 1966; Karatekin, Couperus, & Marcus, 2004),502

arousal (Wang et al., 2018), and cognitive effort (Porter, Troscianko, & Gilchrist, 2007). The503

results of the current study indicate that the changes in pupil size associated with these504

underlying processes were not useful in delineating the tasks being classified (i.e., Search,505

Memorize, Rate), potentially because these tasks did not evoke a reliable pattern of changes506

in pupil size. Additionally, properties of the stimuli known to influence pupil size, such as507

luminance and contrast, were not controlled in these datasets. Given that stimuli were508

randomly assigned, there is the possibility that uncontrolled stimulus properties known to509

affect pupil size impeded the CNN’s capacity to detect patterns in the pupil size data.510

The findings from the current study support the notion that black box CNNs are a511

viable approach to determining task from eye movement data. In a recent review, Lukander,512

Toivanen, and Puolamäki (2017) expressed concern regarding the lack of generalizability of513

black box approaches when decoding eye movement data. Overall, the current study showed514



DEEP LEARNING AND EYE TRACKING 27

a consistent pattern of results for the XYP timeline and image datasets, but some minor515

inconsistencies in the pattern of results for the x- and y- coordinate subset comparisons.516

These inconsistencies may be a product of overlap in the cognitive processes underlying the517

three tasks. When the data are batched into subsets, at least one dimension (i.e.,518

x-coordinates, y-coordinates, or pupil size) is removed, leading to a potential loss of519

information. When the data provide fewer meaningful distinctions, finer-grained inferences520

are necessary for the tasks to be distinguishable. As shown by Coco and Keller (2014), eye521

movement data can be more effectively decoded when the cognitive processes underlying the522

tasks are explicitly differentiable. While the cognitive processes distinguishing memorizing,523

searching, or rating an image are intuitively different, the eye movements elicited from these524

cognitive processes are not easily differentiated. To correct for potential mismatches between525

the distinctive task-diagnostic features in the data and the level of distinctiveness required to526

classify the tasks, future research could more definitively conceptualize the cognitive527

processes underlying the task-at-hand.528

Classifying task from eye movement data is often carried out in an effort to advance529

technology to improve educational outcomes, strengthen the independence of physically and530

mentally handicapped individuals, or improve HCI’s (Koochaki & Najafizadeh, 2018). Given531

the previous questions raised regarding the reliability and generalizability of black-box CNN532

classification, the current study first tested models on an exploratory dataset, then confirmed533

the outcome using a second independent dataset. Overall, the findings of this study indicate534

that this black-box approach is capable of producing a stable and generalizable outcome.535

Additionally, the supplementary analyses showed that different task sets, or a different536

number of tasks, could lead the algorithm to interpret features differently, which should be537

taken into account when comparing task classification approaches. Future studies that538

incorporate features from the stimulus might have the potential to surpass current539

state-of-the-art classification. According to Bulling, Weichel, and Gellersen (2013),540

incorporating stimulus feature information into the dataset may improve accuracy relative to541
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decoding gaze location data and pupil size. Alternatively, Borji and Itti (2014) suggested542

that accounting for salient features in the the stimulus might leave little to no room for543

theoretically defined classifiers to consider mental state. Future research should examine the544

potential for the inclusion of stimulus feature information in addition to the eye movement545

data to boost black-box CNN classification accuracy of image data beyond that of timeline546

data.547
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Appendix631

Additional analyses were conducted in an attempt to clarify the effect of task on632

classification accuracy. These supplementary analyses were not seen as central to the current633

study, but could prove to be informative to researchers attempting to replicate or extend634

these findings in the future. The results from the primary analysis showed that classification635

accuracies were the lowest for the Memorize condition. To further understand why636

classification accuracy was lower for the Memorize condition than it was for the Search or637

Rate condition, the Exploratory and Confirmatory timeline datasets were systematically638

batched into subsets with the Search (S), Memorize (M), or Rate (R) condition removed (i.e.,639

∅MR, S∅R, SM∅), and then run through the CNN classifier using the same methods as the640

primary analysis, but with only two classes.641

All of the data subsets analyzed in this supplementary analysis were decoded with642

better than chance accuracy (see Figure 8a). The same pattern of results was observed in643

both the Exploratory and Confirmatory datasets. When the Memorize condition was644

removed, classification accuracy improved (see Table 4, Figure 8a). When the Rate condition645

was removed, classification was the worst. When the Memorize condition was included (i.e.,646

SM∅ and ∅MR), mis-classifications were biased toward Memorize, and the Memorize647

condition was more accurately predicted than the Search and Rate conditions (see Figure 9).648

Table 4
Supplementary Subset Comparisons

Exploratory Confirmatory
Comparison t p t p
∅MR vs. S∅R 3.248 .008 3.094 .012
∅MR vs. SM∅ 2.875 .021 2.923 .018
S∅R vs. SM∅ 6.123 < .001 6.017 < .001

The accuracies for all of the data subsets observed in the supplementary analysis were649

higher than the accuracies observed in the main analysis. Although there is a clear difference650

in accuracy, the primary analysis was classifying three categories (chance = .33) and the651
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Figure 8 . The graph represents the average accuracy reported for each subset of the Exploratory and Confirmatory timeline
data for (a) the supplementary analysis, and the (b) re-calculated accuracies from the primary analysis. All of the data subsets
were decoded at levels better than chance (.50). The error bars represent standard errors.

supplementary analysis was classifying two categories (chance = .50). Because the baseline652

chance performance was different for the primary and supplemental analyses, any conclusions653

drawn from a comparison of the results of analyses could be misleading. For this reason, we654

revisited the results from the primary analysis and re-calculated the predictions to be655

equivalent to a 50% chance threshold. Because the cross-validation scheme implemented by656

the DeLINEATE toolbox (http://delineate.it) (Kuntzelman et al., 2021) guaranteed an equal657

number of trials in the test set were assigned to each condition for each dataset, we were able658

to re-calculate 2-category predictions from the 3-category predictions presented in the659

confusion matrices from the primary analysis (see Figure 5). The predictions were660

re-calculated using the following formula: Prediction(A,A,A∅C) = Prediction(A,A,ABC) /661

(Prediction(A,A,ABC) + Prediction(A,C,ABC)). For example, accuracy for the Search662

classification for S∅R would be calculated with the following: Prediction(S,S,S∅R) =663

Prediction(S,S,SMR) / (Prediction(S,S,SMR) + Prediction(S,R,SMR), where Prediction(S,R,S∅R) is664

http://delineate.it
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Figure 9 . The confusion matrices represent the average classification accuracies for each condition of the timeline data (S =
Search, M = Memorize, R = Rate). The vertical axis of the confusion matrices represents the actual condition for the trial.
The horizontal axis of the confusion matrices represents the condition that was predicted by the model.

the ratio of Search trials that were misclassified as Rate.665

The results for the re-calculated predictions followed a pattern similar to the main666

supplementary analysis (see Figure 8b). Looking back at the primary analysis, the667

3-category classifications predicted the Memorize conditions with the lowest accuracy (c.f.,668

Search and Rate conditions), and mis-classifications of the Search and Rate conditions were669

most often categorized as Memorize (see Figure 5). Because the Memorize condition was670

mis-classified more often than the other conditions in the primary analysis, the removal of671

the third class in the re-calculated SM∅ and ∅MR subsets resulted in a disproportionate672

amount of mis-classified Memorize trials being removed from those data subsets, somewhat673

eliminating the tendency to mis-classify Search and Rate trials as Memorize (see Figure 10).674

Nevertheless, the re-calculated SM∅ and ∅MR subsets were classified less accurately than675

S∅R, just as in the main supplementary analysis.676
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Figure 10 . The confusion matrices represent a re-calculation of the classification accuracies for each category from the primary
analysis. This re-calculation is meant to make the accuracies presented in the primary analysis (chance = .33) equivalent to
the classification accuracies presented in the supplementary analysis (chance = .50).
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